Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38596842

RESUMO

The interaction between bacteria and the host plays a vital role in the initiation and progression of systemic diseases, including gastrointestinal and oral diseases, due to the secretion of various virulence factors from these pathogens. GroEL, a potent virulence factor secreted by multiple oral pathogenic bacteria, is implicated in the damage of gingival epithelium, periodontal ligament, alveolar bone and other peripheral tissues. However, the underlying biomechanism is still largely unknown. In the present study, we verify that GroEL can trigger the activation of NLRP3 inflammasome and its downstream effector molecules, IL-1ß and IL-18, in human periodontal ligament stem cells (hPDLSCs) and resultantly induce high activation of gelatinases (MMP-2 and MMP-9) to promote the degradation of extracellular matrix (ECM). GroEL-mediated activation of the NLRP3 inflammasome requires the participation of Toll-like receptors (TLR2 and TLR4). High upregulation of TLR2 and TLR4 induces the enhancement of NF-κB (p-p65) signaling and promotes its nuclear accumulation, thus activating the NLRP3 inflammasome. These results are verified in a rat model with direct injection of GroEL. Collectively, this study provides insight into the role of virulence factors in bacteria-induced host immune response and may also provide a new clue for the prevention of periodontitis.

2.
Int Endod J ; 57(5): 549-565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332717

RESUMO

AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.


Assuntos
Polpa Dentária , Fator de Crescimento Derivado de Plaquetas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Conexina 43/metabolismo , Fosfatidilinositol 3-Quinases , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Regeneração , Células-Tronco/metabolismo
3.
Plant Commun ; 5(2): 100791, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168637

RESUMO

The domestication of Brassica oleracea has resulted in diverse morphological types with distinct patterns of organ development. Here we report a graph-based pan-genome of B. oleracea constructed from high-quality genome assemblies of different morphotypes. The pan-genome harbors over 200 structural variant hotspot regions enriched in auxin- and flowering-related genes. Population genomic analyses revealed that early domestication of B. oleracea focused on leaf or stem development. Gene flows resulting from agricultural practices and variety improvement were detected among different morphotypes. Selective-sweep and pan-genome analyses identified an auxin-responsive small auxin up-regulated RNA gene and a CLAVATA3/ESR-RELATED family gene as crucial players in leaf-stem differentiation during the early stage of B. oleracea domestication and the BoKAN1 gene as instrumental in shaping the leafy heads of cabbage and Brussels sprouts. Our pan-genome and functional analyses further revealed that variations in the BoFLC2 gene play key roles in the divergence of vernalization and flowering characteristics among different morphotypes, and variations in the first intron of BoFLC3 are involved in fine-tuning the flowering process in cauliflower. This study provides a comprehensive understanding of the pan-genome of B. oleracea and sheds light on the domestication and differential organ development of this globally important crop species.


Assuntos
Brassica , Domesticação , Brassica/genética , Genômica , Genoma de Planta/genética , Ácidos Indolacéticos
4.
Acta Chim Slov ; 70(4): 509-515, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38124645

RESUMO

A dinuclear oxidovanadium(V) complex [V2O2L2(OMe)2] (1) was synthesized from N'-(2-hydroxy-5-methylbenzylidene)-4-methylbenzohydrazide (H2L) and VO(acac)2 in MeOH. Reaction of complex 1 with 3-hydroxy-2-methyl-4-pyrone (HL') afforded a mononuclear oxidovanadium(V) complex [VOLL'] (2). The hydrazone and both complexes were characterized by IR, UV and 1H NMR spectroscopy, as well as X-ray single crystal determination. X-ray powder diffraction of the complexes was performed. The V atoms in the two complexes are in octahedral coordination. The molecules of complex 2 are linked through non-classical hydrogen bonds of type C-H∙∙∙O to form one-dimensional chains running along the a axis. The biological assay indicates that the complexes have good antimicrobial activities on the bacteria strains P. aeroginosa, S. aureus, B. subtilis and E. coli.


Assuntos
Complexos de Coordenação , Escherichia coli , Antibacterianos , Estrutura Molecular , Staphylococcus aureus , Raios X , Vanádio/química
5.
Plants (Basel) ; 12(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960062

RESUMO

The RNA-binding glycine-rich proteins (RBGs) of the glycine-rich protein family play vital roles in regulating gene expression both at the transcriptional and post-transcriptional levels. However, the members and functions in response to abiotic stresses of the RBG gene family remain unclear in Brassica oleracea. In this study, a total of 19 BoiRBG genes were identified through genome-wide analysis in broccoli. The characteristics of BoiRBG sequences and their evolution were examined. An analysis of synteny indicated that the expansion of the BoiRBG gene family was primarily driven by whole-genome duplication and tandem duplication events. The BoiRBG expression patterns revealed that these genes are involved in reaction to diverse abiotic stress conditions (i.e., simulated drought, salinity, heat, cold, and abscisic acid) and different organs. In the present research, the up-regulation of BoiRBGA13 expression was observed when subjected to both NaCl-induced and cold stress conditions in broccoli. Moreover, the overexpression of BoiRBGA13 resulted in a noteworthy reduction in taproot lengths under NaCl stress, as well as the inhibition of seed germination under cold stress in broccoli, indicating that RBGs play different roles under various stresses. This study provides insights into the evolution and functions of BoiRBG genes in Brassica oleracea and other Brassicaceae family plants.

6.
Bone Res ; 11(1): 60, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940665

RESUMO

Matrix vesicles (MVs) have shown strong effects in diseases such as vascular ectopic calcification and pathological calcified osteoarthritis and in wound repair of the skeletal system due to their membranous vesicle characteristics and abundant calcium and phosphorus content. However, the role of MVs in the progression of osteoporosis is poorly understood. Here, we report that annexin A5, an important component of the matrix vesicle membrane, plays a vital role in bone matrix homeostasis in the deterioration of osteoporosis. We first identified annexin A5 from adherent MVs but not dissociative MVs of osteoblasts and found that it could be sharply decreased in the bone matrix during the occurrence of osteoporosis based on ovariectomized mice. We then confirmed its potential in mediating the mineralization of the precursor osteoblast lineage via its initial binding with collagen type I to achieve MV adhesion and the subsequent activation of cellular autophagy. Finally, we proved its protective role in resisting bone loss by applying it to osteoporotic mice. Taken together, these data revealed the importance of annexin A5, originating from adherent MVs of osteoblasts, in bone matrix remodeling of osteoporosis and provided a new strategy for the treatment and intervention of bone loss.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Calcificação Vascular , Animais , Camundongos , Anexina A5/metabolismo , Calcificação Fisiológica/fisiologia , Matriz Óssea/metabolismo
7.
Cell Prolif ; : e13579, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012096

RESUMO

It is well recognized that mitochondrial dynamics plays a vital role in cartilage physiology. Any perturbation in mitochondrial dynamics could cause disorders in cartilage metabolism and even lead to the occurrence of cartilage diseases such as osteoarthritis (OA). TGF-ß3, as an important growth factor that appears in the joints of OA disease, shows its great potential in chondrocyte growth and metabolism. Nevertheless, the role of TGF-ß3 on mitochondrial dynamics is still not well understood. Here we aimed to investigate the effect of TGF-ß3 on mitochondrial dynamics of chondrocytes and reveal its underlying bio-mechanism. By using transmission electron microscopy (TEM) for the number and morphology of mitochondria, western blotting for the protein expressions, immunofluorescence for the cytoplasmic distributions of proteins, and RNA sequencing for the transcriptome changes related to mitochondrial dynamics. We found that TGF-ß3 could increase the number of mitochondria in chondrocytes. TGF-ß3-enhanced mitochondrial number was via promoting the mitochondrial fission. The mitochondrial fission induced by TGF-ß3 was mediated by AMPK signaling. TGF-ß3 activated canonical p-Smad3 signaling and resultantly mediated AMPK-induced mitochondrial fission. Taken together, these results elucidate an understanding of the role of TGF-ß3 on mitochondrial dynamics in chondrocytes and provide potential cues for therapeutic strategies in cartilage injury and OA disease in terms of energy metabolism.

8.
Genes (Basel) ; 14(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003047

RESUMO

Ornamental kale (Brassica oleracea var. acephala) is an attractive ornamental plant with a range of leaf colors and shapes. Breeding new varieties of ornamental kale has proven challenging due to its lengthy breeding cycle and the limited availability of genetic markers. In this study, a F1DH ornamental kale population comprising 300 DH lines was constructed using microspore culture. A high-density genetic map was developed by conducting whole-genome sequencing on 150 individuals from the F1DH population. The genetic map contained 1696 bin markers with 982,642 single-nucleotide polymorphisms (SNPs) spanning a total distance of 775.81 cM on all nine chromosomes with an average distance between markers of 0.46 cM. The ornamental kale genetic map contained substantially more SNP markers compared with published genetic maps for other B. oleracea crops. Furthermore, utilizing this high-density genetic map, we identified seven quantitative trait loci (QTLs) that significantly influence the leaf shape of ornamental kale. These findings are valuable for understanding the genetic basis of key agronomic traits in ornamental kale. The F1DH progenies provide an excellent resource for germplasm innovation and breeding new varieties of ornamental kale. Additionally, the high-density genetic map provides crucial insights for gene mapping and unraveling the molecular mechanisms behind important agronomic traits in ornamental kale.


Assuntos
Brassica , Humanos , Brassica/genética , Haploidia , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas/genética
11.
Adv Healthc Mater ; 12(30): e2301685, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37596884

RESUMO

It is recognized that the changes in the physical properties of extracellular matrix (ECM) result in fine-tuned cell responses including cell morphology, proliferation and differentiation. In this study, a novel patterned equidistant micropillar substrate based on polydimethylsiloxane (PDMS) is designed to mimic the collagen fiber-like network of the cartilage matrix. By changing the component of the curing agent to an oligomeric base, micropillar substrates with the same topology but different stiffnesses are obtained and it is found that chondrocytes seeded onto the soft micropillar substrate maintain their phenotype by gathering type II collagen and aggrecan more effectively than those seeded onto the stiff micropillar substrate. Moreover, chondrocytes sense and respond to micropillar substrates with different stiffnesses by altering the ECM-cytoskeleton-focal adhesion axis. Further, it is found that the soft substrate-preserved chondrocyte phenotype is dependent on the activation of Wnt/ß-catenin signaling. Finally, it is indicated that the changes in osteoid-like region formation and cartilage phenotype loss in the stiffened sclerotic area of osteoarthritis cartilage to validate the changes triggered by micropillar substrates with different stiffnesses. This study provides the cell behavior changes that are more similar to those of real chondrocytes at tissue level during the transition from a normal state to a state of osteoarthritis.


Assuntos
Condrócitos , Osteoartrite , Humanos , Biomimética , Cartilagem , Matriz Extracelular/química
12.
Nano Lett ; 23(17): 7950-7960, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37418659

RESUMO

It is a big challenge to design a biomimetic physical microenvironment with greater similarity to in vivo tissue to observe real cell behaviors. We established a novel cell culture platform based on patterned equidistant micropillars with stiff and soft stiffnesses to mimic the changes that happened in the transition from normal to osteoporotic disease. We first demonstrated that the soft micropillar substrate decreased osteocyte synaptogenesis through synaptogyrin 1 and that this decrease was accompanied by impairment of cell mechanoperception and a decrease in cellular cytoskeletal rearrangement. We then found that the soft equidistant micropillar substrate reduced the osteocyte synaptogenesis mainly via the inactivation of Erk/MAPK signaling. We finally found that soft micropillar substrate-mediated synaptogenesis impacted the cell-to-cell communication and matrix mineralization of osteocytes. Taken together, this study provides evidence of cellular mechanical responses that are much more similar to those of real osteocytes at the bone tissue level.


Assuntos
Biomimética , Osteócitos , Osso e Ossos , Técnicas de Cultura de Células , Mecanotransdução Celular
13.
Mater Today Bio ; 20: 100682, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304578

RESUMO

Articular cartilage, composed of collagen type II as a major extracellular matrix and chondrocyte as a unique cell type, is a specialized connective tissue without blood vessels, lymphatic vessels and nerves. This distinctive characteristic of articular cartilage determines its very limited ability to repair when damaged. It is well known that physical microenvironmental signals regulate many cell behaviors such as cell morphology, adhesion, proliferation and cell communication even determine chondrocyte fate. Interestingly, with increasing age or progression of joint diseases such as osteoarthritis (OA), the major collagen fibrils in the extracellular matrix of articular cartilage become larger in diameter, leading to stiffening of articular tissue and reducing its resistance to external tension, which in turn aggravates joint damage or progression of joint diseases. Therefore, designing a physical microenvironment closer to the real tissue and thus obtaining data closer to the real cellular behaviour, and then revealing the biological mechanisms of chondrocytes in pathological states is of crucial importance for the treatment of OA disease. Here we fabricated micropillar substrates with the same topology but different stiffnesses to mimic the matrix stiffening that occurs in the transition from normal to diseased cartilage. It was first found that chondrocytes responded to stiffened micropillar substrates by showing a larger cell spreading area, a stronger enhancement of cytoskeleton rearrangement and more stability of focal adhesion plaques. The activation of Erk/MAPK signalling in chondrocytes was detected in response to the stiffened micropillar substrate. Interestingly, a larger nuclear spreading area of chondrocytes at the interface layer between the cells and top surfaces of micropillars was observed in response to the stiffened micropillar substrate. Finally, it was found that the stiffened micropillar substrate promoted chondrocyte hypertrophy. Taken together, these results revealed the cell responses of chondrocytes in terms of cell morphology, cytoskeleton, focal adhesion, nuclei and cell hypertrophy, and may be beneficial for understanding the cellular functional changes affected by the matrix stiffening that occurs during the transition from a normal state to a state of osteoarthritis.

14.
Biomolecules ; 13(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371544

RESUMO

Z-DNA refers to the left-handed double-helix DNA that has attracted much attention because of its association with some specific biological functions. However, because of its low content and unstable conformation, Z-DNA is normally difficult to observe or identify. Up to now, there has been a lack of unified or standard analytical methods among diverse techniques for probing Z-DNA and its transformation conveniently. In this work, NaCl, MgCl2, and ethanol were utilized to induce d(GC)8 from B-DNA to Z-DNA in vitro, and Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of Z-DNA under different induction conditions. The structural changes during the transformation process were carefully examined, and the DNA chirality alterations were validated by the circular dichroism (CD) measurements. The Z-DNA characteristic signals in the 1450 cm-1-900 cm-1 region of the d(GC)8 infrared (IR) spectrum were observed, which include the peaks at 1320 cm-1, 1125 cm-1 and 925 cm-1, respectively. The intensity ratios of A1320/A970, A1125/A970, and A925/A970 increased with Z-DNA content in the transition process. Furthermore, compared with the CD spectra, the IR spectra showed higher sensitivity to Z-DNA, providing more information about the molecular structure change of DNA. Therefore, this study has established a more reliable FTIR analytical approach to assess BZ DNA conformational changes in solutions, which may help the understanding of the Z-DNA transition mechanism and promote the study of Z-DNA functions in biological systems.


Assuntos
DNA Forma Z , Conformação de Ácido Nucleico , Espectrofotometria Infravermelho , DNA/química , Espectroscopia de Infravermelho com Transformada de Fourier , Dicroísmo Circular
15.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 701-712, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171185

RESUMO

Mechano growth factor (MGF), an isoform of insulin-like growth factor 1 (IGF-1), is recognized as a typical mechanically sensitive growth factor and has been shown to play an indispensable role in the skeletal system. In the joint cavity, MGF is highly expressed in chondrocytes, especially in the damaged cartilage tissue caused by trauma or degenerative diseases such as osteoarthritis (OA). Cartilage is an extremely important component of joints because it functions as a shock absorber and load distributer at the weight-bearing interfaces in the joint cavity, but it can hardly be repaired once injured due to its lack of blood vessels, lymphatic vessels, and nerves. MGF has been proven to play an important role in chondrocyte behaviors, including cell proliferation, migration, differentiation, inflammatory reactions and apoptosis, in and around the injury site. Moreover, under the normalized mechanical microenvironment in the joint cavity, MGF can sense and respond to mechanical stimuli, regulate chondrocyte activity, and maintain the homeostasis of cartilage tissue. Recent reports continue to explain its effects on various cell types and sport-related tissues, but its role in cartilage development, homeostasis and disease occurrence is still controversial, and its internal biological mechanism is still elusive. In this review, we summarize recent discoveries on the role of MGF in chondrocytes and cartilage defects, including tissue repair at the macroscopic level and chondrocyte activities at the microcosmic level, and discuss the current state of research and potential gaps in knowledge.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Cartilagem/metabolismo , Osteoartrite/metabolismo , Diferenciação Celular , Cartilagem Articular/metabolismo
16.
Biochem Biophys Rep ; 34: 101462, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37025987

RESUMO

Gap junctions, which are mainly composed of connexin units, play an indispensable role in cell morphogenesis, proliferation, migration, adhesion and differentiation of osteoblast lineage cells, and thus mediate bone development, homeostasis and disease occurrence. Platelet-derived growth factor-AA (PDGF-AA) is proved to have a great influence on osteoblast cell lines and is widely applied in the field of bone defect and wound healing. However, the role of PDGF-AA on gap junction formation in the osteoblast lineage remains elusive. In the current study, we aimed to investigate the impact of PDGF-AA on gap junction formation and cell-to-cell communication in the osteoblast lineage and explore its underlying biomechanism. We first found that PDGF-AA promoted cell proliferation and thus increased gap junction formations in living primary osteoblasts and MC3T3-E1 cells through scrape loading and dye transfer (SL/DT) assay. We then confirmed that PDGF-AA enhanced gap junction formations through up-regulation of connexin 43 (Cx43). We next detected the activation of p-Akt signaling in primary osteoblasts and MC3T3-E1 cells that were induced by PDGF-AA. Through inhibitory experiments, we further confirmed that PDGF-AA-mediated gap junction formation occurred via the activation of PI3K/Akt signaling. Taking together, our results provided evidences that PDGF-AA promoted gap junction formation in the osteoblast lineage through p-Akt signaling, which helped to understand the role of PDGF-AA in bone regeneration and diseases.

17.
Cell Commun Signal ; 21(1): 55, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915160

RESUMO

Fibroblast growth factor 19 (FGF19) is recognized to play an essential role in cartilage development and physiology, and has emerged as a potential therapeutic target for skeletal metabolic diseases. However, FGF19-mediated cellular behavior in chondrocytes remains a big challenge. In the current study, we aimed to investigate the role of FGF19 on chondrocytes by characterizing mitochondrial biogenesis and fission-fusion dynamic equilibrium and exploring the underlying mechanism. We first found that FGF19 enhanced mitochondrial biogenesis in chondrocytes with the help of ß Klotho (KLB), a vital accessory protein for assisting the binding of FGF19 to its receptor, and the enhanced biogenesis accompanied with a fusion of mitochondria, reflecting in the elongation of individual mitochondria and the up-regulation of mitochondrial fusion proteins. We then revealed that FGF19-mediated mitochondrial biogenesis and fusion required the binding of FGF19 to the membrane receptor, FGFR4, and the activation of AMP-activated protein kinase alpha (AMPKα)/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α)/sirtuin 1 (SIRT1) axis. Finally, we demonstrated that FGF19-mediated mitochondrial biogenesis and fusion was mainly dependent on the activation of p-p38 signaling. Inhibition of p38 signaling largely reduced the high expression of AMPKα/PGC-1α/SIRT1 axis, decreased the up-regulation of mitochondrial fusion proteins and impaired the enhancement of mitochondrial network morphology in chondrocytes induced by FGF19. Taking together, our results indicate that FGF19 could increase mitochondrial biogenesis and fusion via AMPKα-p38/MAPK signaling, which enlarge the understanding of FGF19 on chondrocyte metabolism. Video Abstract.


Assuntos
Proteínas Quinases Ativadas por AMP , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Condrócitos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Biogênese de Organelas , Sirtuína 1/metabolismo
18.
Cell Signal ; 105: 110605, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36681291

RESUMO

Gap junction intercellular communication (GJIC) allows the transfer of material, message and energy between cells, which influences cell behaviors including cell proliferation, migration, differentiation and apoptosis and determines cell fate. Interleukin-10 (IL-10), a versatile cytokine, attracts more and more attention in the cartilage pathology such as osteoarthritis (OA) due to its potential in anti-inflammation and wound repair. However, whether IL-10 can mediate GJIC in chondrocytes remains elusive. In the current study, we aimed to explore the role of IL-10 on GJIC and its underlying mechanism. We found that IL-10 can promote GJIC in living chondrocytes. IL-10-enhanced GJIC in chondrocytes was dependent on the up-regulation of connexin 43 (Cx43). Knockdown experiment based on siRNA interference then confirmed that IL-10-enhanced GJIC required participation of IL-10 receptor 1 (IL-10R1). IL-10 activated signal transducer and activator of transcription 3 (STAT3) signaling and promoted the nuclear accumulation of p-STAT3 through IL-10 receptor 1. Inhibitor experiment further confirmed the importance of STAT3 signaling in IL-10-mediated GJIC. Taking together, our results provided a thorough process of IL-10-modulated cell-to-cell communication in chondrocytes and established a bridge between inflammatory factor, IL-10, and GJIC, which can increase our understanding about the physiology and pathology of cartilage.


Assuntos
Condrócitos , Interleucina-10 , Condrócitos/metabolismo , Interleucina-10/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Comunicação Celular , Receptores de Interleucina-10/metabolismo
19.
Materials (Basel) ; 15(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35806543

RESUMO

Grain size is one of the most important parameters for metallographic microstructure analysis, which can partly determine the material performance. The measurement of grain size is based on accurate image segmentation methods, which include traditional image processing methods and emerging machine-learning-based methods. Unfortunately, traditional image processing methods can hardly segment grains correctly from metallographic images with low contrast and blurry boundaries. Moreover, the proposed machine-learning-based methods need a large dataset to train the model and can hardly deal with the segmentation challenge of complex images with fuzzy boundaries and complex structure. In this paper, an improved U-Net model is proposed to automatically accomplish image segmentation of complex metallographic images with only a small training set. The experiments on metallographic images show the significant advantage of the method, especially for the metallographic images with low contrast, a fuzzy boundary and complex structure. Compared with other deep learning methods, the improved U-Net scored higher in ACC, MIoU, Precision, and F1 indexes, among which ACC was 0.97, MIoU was 0.752, Precision was 0.98, and F1 was 0.96. The grain size was calculated based on the segmentation according to the American Society for Testing Material (ASTM) standards, producing a satisfactory result.

20.
Front Plant Sci ; 13: 836940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498704

RESUMO

Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus Rhizoctonia cerealis, and Fusarium head blight (FHB), caused by Fusarium graminearum, resulting in reduced production. Piriformospora indica is a root endophytic fungus with a wide range of host plants, which increases their growth and tolerance to biotic and abiotic stresses. In this study, the capability of P. indica to protect wheat seedlings against R. cerealis and F. graminearum was investigated at the physiological, biochemical, and molecular levels. Our results showed that P. indica significantly reduced the disease progress on wheat caused by F. graminearum and R. cerealis in vivo, but not showed any antagonistic effect on F. graminearum and R. cerealis in vitro. Additionally, P. indica can induce systemic resistance by elevating H2O2 content, antioxidase activity, relative water content (RWC), and membrane stability index (MSI) compared to the plants only inoculated with F. graminearum or R. cerealis and control. RNA-seq suggested that transcriptome changes caused by F. graminearum were more severe than those caused by R. cerealis. The number of differentially expressed genes (DEGs) in the transcriptome can be reduced by the addition of P. indica: for F. graminearum reduced by 18% and for R. cerealis reduced 58%. The DEGs related to disease resistance, such as WRKY and MAPK, were upregulated by P. indica colonization. The data further revealed that the transcriptional resistance to F. graminearum and R. cerealis mediated by P. indica is quite different.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...